妙啊!!
无定根的最小树形图,没想出来怎么做,看了题解后的第一感想就是,太妙了!!!
简单说一下无定根的最小树形图的基本思路。
首先建立一个虚根 r ,让虚根连向每一个实点,权值尽量大,一般选择实边边权和+1即可,以虚根建立最小树形图。
如果得到的答案大于等于两倍的 虚根到实点距离 , 那么就是不存在。因为最多只会存在一条。具体自己yy即可。
而我们需要找出的根节点,因为存在缩点,所以直接拿 虚根指向的结点是不行的。另一条有效且方便的方法就是在 虚根连实点的时候 一般人都会按顺序连,那么只要记录边的序号,然后 序号 – 点数即可。
题意:
无定根最小树形图裸题。
思路:
见上。
AC Code
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define each(i, n) for (int(i) = 0; (i) < (n); (i)++)
#define reach(i, n) for (int(i) = n - 1; (i) >= 0; (i)--)
#define range(i, st, en) for (int(i) = (st); (i) <= (en); (i)++)
#define rrange(i, st, en) for (int(i) = (en); (i) >= (st); (i)--)
#define fill(ary, num) memset((ary), (num), sizeof(ary))
using namespace std;
typedef long long ll;
typedef pair<int, int> pdd;
const int maxn = 1e3 + 5;
const int maxm = 1e4 + 5;
const int inf = 0x3f3f3f3f;
int in[maxn];
int pre[maxn], vis[maxn], id[maxn];
struct node {
int u, v;
ll cost;
} edges[maxm];
ll zhuliu(int root, int n, int m, int& key)
{
ll res = 0;
int u, v;
while (true) {
each(i, n + 1) in[i] = inf;
each(i, m)
{
u = edges[i].u, v = edges[i].v;
if (u != v && edges[i].cost < in[v]) {
pre[v] = u;
in[v] = edges[i].cost;
if (u == root)
key = i;
}
}
in[root] = 0;
each(i, n) if (in[i] == inf) return -1;
int scc = 0;
fill(id, -1), fill(vis, -1);
each(i, n)
{
res += in[i];
v = i;
while (vis[v] != i && id[v] == -1 && v != root) {
vis[v] = i;
v = pre[v];
}
if (v != root && id[v] == -1) {
for (u = pre[v]; u != v; u = pre[u])
id[u] = scc;
id[v] = scc++;
}
}
if (scc == 0)
break;
each(i, n) if (id[i] == -1) id[i] = scc++;
each(i, m)
{
v = edges[i].v;
edges[i].u = id[edges[i].u];
edges[i].v = id[edges[i].v];
if (edges[i].u != edges[i].v)
edges[i].cost -= in[v];
}
n = scc;
root = id[root];
}
return res;
}
int main()
{
int n, m, key;
while (scanf("%d %d", &n, &m) != EOF) {
ll sum = 0;
each(i, m)
{
scanf("%d %d %lld", &edges[i].u, &edges[i].v, &edges[i].cost);
sum += edges[i].cost;
}
sum++;
each(i, n) edges[i + m] = (node){ n, i, sum };
ll res = zhuliu(n, n + 1, m + n, key);
if (res == -1 || res - sum >= sum)
puts("impossible");
else
printf("%lld %d\n", res - sum, key - m);
puts("");
}
return 0;
}